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Abstract In this paper, we proposed a modified Logarithmic-Quadratic Proximal (LQP)
method [Auslender et al.: Comput. Optim. Appl. 12, 31–40 (1999)] for solving variational
inequalities problems. We solved the problem approximately, with constructive accuracy cri-
terion. We show that the method is globally convergence under that the operator is pseudo-
monotone which is weaker than the monotonicity and the solution set is nonempty. Some
preliminary computational results are given.

Keywords Variational inequality · Pseudomonotone operator · Logarithmic-quadratic
proximal method

1. Introduction

A classical variational inequality problem, denoted by VI(F,�), is to find a vector x∗ ∈ �

such that

F(x∗)T (y − x∗) ≥ 0, ∀y ∈ �, (1)

where � ⊂ Rn is a nonempty closed convex subset of Rn and F is a continuous mapping
from Rn into itself. VI(F,�) includes nonlinear complementarity problems (when � = Rn+)
and system of nonlinear equations (when � = Rn). The present analysis mainly focused on
the case where � = Rn+.

Variational inequality problems have many important applications in economics, opera-
tions research and nonlinear analysis and have been studied by many researchers [3, 5, 6, 8,
9, 12].

It is well known that the VI(F, Rn+) problem can be alternatively formulated as finding the
zero point of the operator T (x) = F(x) + NRn+(x), i.e., find x∗ ∈ Rn+ such that 0 ∈ T (x∗),
where NRn+(·) is the normal cone operator to Rn+ defined by
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NRn+(x) =
{ {y ∈ Rn : yT (v − x) ≤ 0, ∀v ∈ Rn+} if x ∈ Rn+,

∅ otherwise.

A classical method to solve this problem is the proximal point algorithm, which starting with
any vector x0 ∈ Rn+ and βk ≥ β > 0, iteratively updates xk+1 conforming the following
problem:

0 ∈ βk T (x) + ∇x q(x, xk), (2)

where

q(x, xk) = 1
2‖x − xk‖2, (3)

is a quadratic function of x . Motivation for studying the algorithms of problem (2) could be
found in several studies [7, 13, 15], in place of usual quadratic term where many reseachers
have used some nonlinear functions r(x, xk). For instance, we quoted reference [4] for the
iterative schemes of the form (2) using the bregman-based functional instead of (3).

Recently, Auslender et al. [2] have proposed a new type of proximal interior method
through replacing the quadratic function (3) by dφ(x, xk) which could be defined as

dφ(x, y) =
n∑

j=1

y2
j φ(y−1

j x j ).

The fundamental difference here is that the term dφ is used to force the iterates {xk+1} to
stay in the interior of the nonegative orthant Rn++.

Among the possible choices of φ, there exists a particular one which enjoys several attrac-
tive properties for developping efficient algorithms to solve VI(F, Rn+).

Let ν > µ > 0 be given fixed parameters, and define

φ(t) =
{

ν
2 (t − 1)2 + µ(t − log t − 1) if t > 0
+∞ otherwise.

In [1], Auslender et al. used a very special logarithmic-quadratic proximal (LQP) method
(with ν = 2, µ = 1) for solving variational inequalities over polyhedra.

Let µ ∈ (0, 1) be a constant, in this paper we consider another function φ defined by

φ(t) =
{ 1

2 (t − 1)2 + µ(t log t − t + 1) if t > 0
+∞ otherwise.

Then the problem (2) becomes for given xk ∈ Rn+ and βk ≥ β > 0, the new iterate xk+1 is
unique solution of the following set-valued equation:

0 ∈ βk T (x) + ∇x Q(x, xk), (4)

where

Q(x, xk) =



1
2‖x − xk‖2 + µ

n∑
j=1

(xk
j )

2
(

x j

xk
j

log
x j

xk
j
− x j

xk
j
+ 1

)
, if x ∈ Rn++;

+∞, otherwise.
(5)

It is easy to see that

∇x Q(x, xk) = x − xk + µXk log
x

xk
,

where Xk = diag(xk
1 , . . . , xk

n ) and log x
xk = (log x1

xk
1
, . . . , log xn

xk
n
)T .
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Then the problem (4)–(5) is equivalent to the following systems of nonlinear equations

βk F(x) + x − xk + µXk log
x

xk
= 0. (6)

It is more practical to find approximate solutions of (6) rather than the exact solutions due
the fact that in general it exclude some practical applications. Driven by the fact of elimi-
nating this drawback, in this paper, we presented a prediction–correction method with more
relaxed conditions than [1] to solve (6) approximately.

The remaining part of the paper is structured as follows. In the next Section 2 we summa-
rize some basic properties used in this paper. In Section 3, we have presented and analyzed
our method followed by Section 4, where its global convergence is proved. Section 5 deals
with some preliminary results of the proposed method.

2. Preliminaries

We list some important results which will be required in our following analysis.
First, we denote PRn+(·) as the projection under the Euclidean norm, i.e.,

PRn+(z) = min{‖z − x‖ | x ∈ Rn+}.
From the above definition, it follows that

(v − PRn+(v))T (u − PRn+(v)) ≤ 0, ∀u ∈ Rn+, ∀v ∈ Rn . (7)

From (7), it is easy to verify that

‖PRn+(v) − PRn+(u)‖ ≤ ‖v − u‖, ∀u, v ∈ Rn, (8)

and

‖PRn+(v) − u‖2 ≤ ‖v − u‖2 − ‖v − PRn+(v)‖2, ∀v ∈ Rn, u ∈ Rn+. (9)

Definition 2.1 ∀u, v ∈ Rn , the operator F : Rn → Rn is said to be pseudomonotone, if

(v − u)T F(u) ≥ 0 ⇒ (v − u)T F(v) ≥ 0.

The following Lemma plays a crucial role in the analysis via Lemma 3.1.

Lemma 2.1 For given xk > 0 and q ∈ Rn, let x be the positive solution of the following
equation:

q + x − xk + µXk log
x

xk
= 0, (10)

where Xk = diag(xk
1 , . . . , xk

n ) and log x
xk = (log x1

xk
1
, . . . , log xn

xk
n
), then for any y ≥ 0 we

have

(y − x)T q ≥ 1+µ
2

(‖x − y‖2 − ‖xk − y‖2) + 1−µ
2 ‖xk − x‖2. (11)

Proof For each t > 0 we have 1 − 1
t ≤ log t ≤ t − 1, then we obtain after multiplication

by y j xk
j ≥ 0 for each j = 1, . . . , n,

y j xk
j log

x j

x j
k

≤ y j xk
j

(
x j

xk
j

− 1

)
= y j (x j − xk

j ),
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and after multiplication by x j xk
j ≥ 0 for each j = 1, . . . , n,

−x j xk
j log

x j

xk
j

≤ x j xk
j

(
xk

j

x j
− 1

)
= xk

j (xk
j − x j ),

adding the two inequalities, then obtained

(y j − x j )(x j − xk
j + µxk

j log
x j

xk
j

) ≤ µ(y j − xk
j )(x j − xk

j ) + (x j − xk
j )(y j − x j ).

Using the identities

(y j − xk
j )(x j − xk

j ) = 1
2

(
(x j − xk

j )
2 − (x j − y j )

2 + (y j − xk
j )

2
)

,

(x j − xk
j )(y j − x j ) = 1

2

(
(y j − xk

j )
2 − (y j − x j )

2 − (x j − xk
j )

2
)

,

and recalling (10) thus obtained

(x j − y j )(−q j ) ≥ 1 + µ

2

(
(x j − y j )

2 − (xk
j − y j )

2
)

+ 1 − µ

2
(xk

j − x j )
2.

Summing over j = 1, . . . , n, encountered (11). 
�
In course we always assume that the function F is pseudomonotone and the solution set

of VI(F, Rn+), denoted by �∗, is nonempty.

3. The proposed method

At the kth iteration, LQP method finds the exact solution for the following system of equations:

βk F(x) + x − xk + µXk log
x

xk
= 0. (12)

We now present an LQP method-based prediction–correction method for solving VI(F, Rn+).
For given xk > 0 and βk > 0, each iteration of the proposed method consists of two steps,
the first step offers a predictor x̃ k and the second step produces the new iterate xk+1.
Prediction step: Find an approximate solution x̃ k of (12), called predictor, such that

0 ≈ βk F(x̃ k) + x̃ k − xk + µXk log
x̃ k

xk
= ξ k, (13)

and ξ k which satisfies

‖ξ k‖ ≤ η‖xk − x̃ k‖, 0 < η < 1. (14)

Correction step: For α > 0 and 0 ≤ a1 < 1, the new iterate xk+1(α) is defined by

xk+1(α) = a1xk + (1 − a1)PRn+

[
xk − αβk

1 + µ
F(x̃ k)

]
. (15)

Remark 3.1 (14) implies that

|(xk − x̃ k)T ξ k | ≤ η‖xk − x̃ k‖2, 0 < η < 1. (16)
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Remark 3.2 In [1], Auslender et al. proposed the following conditions

∞∑
k=1

‖ξ k‖ < +∞ and
∞∑

k=1

〈ξ k, xk〉 < +∞, (17)

to ensure convergence. It seems that the accuracy criterion (14) can be checked and comple-
mented in practice more easily than (17).

How to choose a suitable step length α > 0 to force convergence? To answer this ques-
tion, we consider maximizing the progress �(α) (will be defined in (18)). Since the solution
point x∗ is unknown, we can not maximize �(α) directly. The following Lemma 3.1 and
Theorem 3.1 convert the task to maximize function 	(α) (will be defined in (30)) which
does not contain x∗.

Lemma 3.1 Let x∗ ∈ �∗, xk+1(α) be defined by (15) and

�(α) = ‖xk − x∗‖2 − ‖xk+1(α) − x∗‖2, (18)

then we have

�(α) ≥ (1 − a1){‖xk − xk∗‖2 + 2α(xk∗ − x̃ k)T dk − 2αµ

1 + µ
‖xk − x̃ k‖2}, (19)

where

xk∗ := PRn+

[
xk − αβk

1 + µ
F(x̃ k)

]
and dk := (xk − x̃ k) + 1

1 + µ
ξ k . (20)

Proof By setting q = βk F(x̃ k) − ξ k in (10) and y = xk∗ := PRn+

[
xk − αβk

1+µ
F(x̃ k)

]
in (11),

it follows

(xk∗ − x̃ k)T
(

1

1 + µ
(ξ k − βk F(x̃ k))

)
≤ 1

2

(
‖xk − xk∗‖2 − ‖x̃ k − xk∗‖2

)

− 1 − µ

2(1 + µ)
‖xk − x̃ k‖2. (21)

Using the following identity

(xk∗ − x̃ k)T (xk − x̃ k) = 1
2

(
‖x̃ k − xk∗‖2 − ‖xk − xk∗‖2

)
+ 1

2‖xk − x̃ k‖2. (22)

Adding (21) and (22) we then obtain

(xk∗ − x̃ k)T {(xk − x̃ k) + 1

1 + µ
(ξ k − βk F(x̃ k))} ≤ µ

1 + µ
‖xk − x̃ k‖2,

which implies

2α(xk∗ − x̃ k)T {(xk − x̃ k) + 1

1 + µ
(ξ k − βk F(x̃ k))} − 2αµ

1 + µ
‖xk − x̃ k‖2 ≤ 0. (23)

Since x∗ ∈ �∗ ⊂ Rn+ and xk∗ = PRn+

[
xk − αβk

1+µ
F(x̃ k)

]
, it follows from (9) that

‖xk∗ − x∗‖2 ≤ ‖xk − αβk

1 + µ
F(x̃ k) − x∗‖2 − ‖xk − αβk

1 + µ
F(x̃ k) − xk∗‖2. (24)
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From (15), we get

‖xk+1(α) − x∗‖2 = ‖a1(xk − x∗) + (1 − a1)(xk∗ − x∗)‖2

= a2
1‖xk − x∗‖2 + (1 − a1)

2‖xk∗ − x∗‖2

+ 2a1(1 − a1)(xk − x∗)T (xk∗ − x∗).

Using the following identity

2(a + b)T b = ‖a + b‖2 − ‖a‖2 + ‖b‖2

for a = xk − xk∗ , b = xk∗ − x∗ and (24), we obtain

‖xk+1(α) − x∗‖2 = a2
1‖xk − x∗‖2 + (1 − a1)

2‖xk∗ − x∗‖2 + a1(1 − a1)

×{‖xk − x∗‖2 − ‖xk − xk∗‖2 + ‖xk∗ − x∗‖2}
= a1‖xk − x∗‖2 + (1 − a1)‖xk∗ − x∗‖2 − a1(1 − a1)‖xk − xk∗‖2

≤ a1‖xk − x∗‖2 + (1 − a1)‖xk − αβk

1 + µ
F(x̃ k) − x∗‖2

−(1 − a1)‖xk − αβk

1 + µ
F(x̃ k) − xk∗‖2 − a1(1 − a1)‖xk − xk∗‖2.

(25)

Using the definition of �(α) and (25), we get

�(α) ≥ (1 − a2
1)‖xk − xk∗‖2 + 2(1 − a1)αβk

1 + µ
(xk∗ − xk)T F(x̃ k)

+2(1 − a1)αβk

1 + µ
(xk − x∗)T F(x̃ k). (26)

Since x̃ k ∈ Rn+ and x∗ is solution of VI(F, Rn+), using pseudomonotonicity of F we have

(x̃ k − x∗)T F(x∗) ≥ 0 ⇒ (x̃ k − x∗)T F(x̃ k) ≥ 0,

and consequently

(xk − x∗)T F(x̃ k) ≥ (xk − x̃ k)T F(x̃ k). (27)

Applying (27) to the last term in the right side of (26) and using 0 ≤ a1 < 1, we obtain

�(α) ≥ (1 − a2
1)‖xk − xk∗‖2 + 2(1 − a1)αβk

1 + µ
(xk∗ − x̃ k)T F(x̃ k)

≥ (1 − a1){‖xk − xk∗‖2 + 2αβk

1 + µ
(xk∗ − x̃ k)T F(x̃ k)}. (28)

Adding (23) (multiplied by 1 − a1) to (28) and using the notation of dk in (20), the Lemma
is proved. 
�
Theorem 3.1 Let �(α) be defined in (18) and dk be defined in (20), then for any x∗ ∈ �∗
and α > 0, we have

�(α) ≥ (1 − a1)	(α), (29)

where

	(α) = 2αϕk − α2‖dk‖2, (30)
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and

ϕk = 1

1 + µ
‖xk − x̃ k‖2 + 1

1 + µ
(xk − x̃ k)T ξ k . (31)

Proof It follows from (19) that

�(α) ≥ (1 − a1){‖xk − xk∗‖2 + 2α(xk∗ − xk)T dk + 2α(xk − x̃ k)T dk − 2αµ

1 + µ
‖xk − x̃ k‖2}

= (1 − a1){‖xk∗ − xk + αdk‖2 − α2‖dk‖2 + 2α(xk − x̃ k)T dk − 2αµ

1 + µ
‖xk − x̃ k‖2}

≥ (1 − a1){2α(xk − x̃ k)T (xk − x̃ k + 1

1 + µ
ξ k) − 2αµ

1 + µ
‖xk − x̃ k‖2 − α2‖dk‖2}

= (1 − a1)

(
2α{ 1

1 + µ
‖xk − x̃ k‖2 + 1

1 + µ
(xk − x̃ k)T ξ k} − α2‖dk‖2

)

= (1 − a1){2αϕk − α2‖dk‖2},
and (29) is proved. 
�

4. Convergence analysis

	(α) measures the progress obtained in the kth iteration. It is natural to choose a step length
αk which maximizes the progress. Note that 	(α) is a quadratic function of α and it reaches
its maximum at

α∗
k = ϕk

‖dk‖2 , (32)

and

	(α∗
k ) = α∗

k ϕk . (33)

In the next theorem we show that α∗
k and 	(α∗

k ) are lower bounded away from zero, and
it is one of the keys to prove the global convergence results.

Theorem 4.1 For given xk ∈ Rn+ and βk > 0, let x̃k and ξ k satisfied to the condition (14),
then we have the following,

α∗
k ≥ 1 − η

2(1 + µ)
, (34)

and

	(α∗
k ) ≥ (1 − η)2

2(1 + µ)2 ‖xk − x̃ k‖2. (35)

Proof It follows from (31) to (16) that

ϕk = 1

1 + µ
‖xk − x̃ k‖2 + 1

1 + µ
(xk − x̃ k)T ξ k ≥

(
1 − η

1 + µ

)
‖xk − x̃ k‖2. (36)
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If (xk − x̃ k)T ξ k ≤ 0, since µ > 0 it follows from (14) to (20) that

‖dk‖2 ≤ ‖xk − x̃ k‖2 + 1

(1 + µ)2 ‖ξ k‖2

≤ ‖xk − x̃ k‖2 + ‖ξ k‖2

≤ 2‖xk − x̃ k‖2, (37)

from (36) to (37), we obtain

α∗
k = ϕk

‖dk‖2 ≥ 1 − η

2(1 + µ)
.

Otherwise, if (xk − x̃ k)T ξ k ≥ 0, it follows from 0 < µ < 1, 0 < η < 1 and (14) that

ϕk = 1

1 + µ
‖xk − x̃ k‖2 + 1

1 + µ
(xk − x̃ k)T ξ k

≥ 1

1 + µ
{1

2
‖xk − x̃ k‖2 + 1

1 + µ
(xk − x̃ k)T ξ k

+1

2
‖xk − x̃ k‖2}

≥ 1

1 + µ
{1

2
‖xk − x̃ k‖2 + 1

1 + µ
(xk − x̃ k)T ξ k

+ 1

2(1 + µ)2 ‖ξ k‖2}

= 1

2(1 + µ)
‖dk‖2,

and thus

α∗
k ≥ 1

2(1 + µ)
≥ 1 − η

2(1 + µ)
.

Using (33), (34) and (36) directly we obtained (35). 
�
For fast convergence, we take a relaxation factor γ ∈ [1, 2) and set the step-size αk in

(15) by αk = γα∗
k . Through simple manipulations we obtain

	(γα∗
k ) = 2γα∗

k ϕk − (γ 2α∗
k )(α∗

k ‖dk‖2)

= (2γα∗
k − γ 2α∗

k )ϕk

= γ (2 − γ )	(α∗
k ). (38)

It follows from Theorem 3.1 and Theorem 4.1 that there is a constant

c := γ (2 − γ )(1 − a1)(1 − η)2

2(1 + µ)2 > 0,

such that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − c‖xk − x̃ k‖2 ∀x∗ ∈ �∗. (39)

The following result is very useful to prove the convergence of our method.

Lemma 4.2 For given xk > 0 and βk > 0, let x̃k to be obtained by the prediction step (13),
then for each x ≥ 0 we have

(x − x̃ k)T (βk F(x̃ k) − ξ k) ≥ (xk − x̃ k)T {(1 + µ)x − (µxk + x̃ k)}. (40)
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Proof By setting q = βk F(x̃ k) − ξ k in (10) and y = x in (11), it follows from (13) that

(x − x̃ k)T (βk F(x̃ k) − ξ k) ≥ 1 + µ

2
(‖x̃ k − x‖2 − ‖xk − x‖2) + 1 − µ

2
‖xk − x̃ k‖2

= (1 + µ)xT xk − (1 + µ)xT x̃k − (1 − µ)(x̃ k)T xk

−µ‖xk‖2 + ‖x̃ k‖2

= (1 + µ)xT (xk − x̃ k) − (xk − x̃ k)T (µxk + x̃ k)

= (xk − x̃ k)T {(1 + µ)x − (µxk + x̃ k)}.
Then the proof is completed. 
�

Now, the convergence of the proposed method could be proved as follows:

Theorem 4.2 If inf∞
k=0 βk = β > 0, then the sequence {xk} generated by the proposed

method converges to some x∞ which is a solution of VI(F, Rn+).

Proof It follows from (39) that {xk} is a bounded sequence and

lim
k→∞ ‖xk − x̃ k‖ = 0. (41)

Consequently, {x̃ k} is also bounded. Since limk→∞ ‖xk − x̃ k‖ = 0, ‖ξ k‖ ≤ η‖xk − x̃ k‖ and
βk ≥ β > 0, it follows from (40) that

lim
k→∞(x − x̃ k)T F(x̃ k) ≥ 0, ∀x ∈ Rn+.

Because {x̃ k} is bounded, it has at least one cluster point. Let x∞ be a cluster point of {x̃ k}
and the subsequence {x̃ k j } converges to x∞. It follows that

lim
j→∞(x − x̃ k j )T F(x̃ k j ) ≥ 0, ∀x ∈ Rn+,

and consequently

(x − x∞)T F(x∞) ≥ 0, ∀x ∈ Rn+.

Then x∞ is a solution of VI(F, Rn+). Note that the inequality (39) is true for all solution
points of VI(F, Rn+) and hence we have

‖xk+1 − x∞‖2 ≤ ‖xk − x∞‖2, ∀k ≥ 0. (42)

Since x̃ k j → x∞( j → ∞) and xk − x̃ k → 0(k → ∞), for any ε > 0, there exists an l > 0
such that

‖x̃ kl − x∞‖ <
ε

2
and ‖xkl − x̃ kl ‖ <

ε

2
. (43)

Therefore, for any k ≥ kl , it follows from (42) to (43) that

‖xk − x∞‖ ≤ ‖xkl − x∞‖ ≤ ‖xkl − x̃ kl ‖ + ‖x̃ kl − x∞‖ < ε.

This implies that the sequence {xk} converges to x∞ which is a solution of VI(F, Rn+). 
�
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5. Preliminary computational results

For numerical experiment we need to find the values of the approximate solution x̃ k . In the
special case ξ k = βk(F(x̃ k) − F(xk)), then (13) is equivalent to the following system of
nonlinear equations

βk F(xk) + x̃ k − xk + µXk log
x̃ k

xk
= 0, (44)

hence

x̃ k
j + µxk

j log x̃ k
j + (βk Fj (xk) − xk

j − µxk
j log xk

j ) = 0, j = 1, . . . , n. (45)

The recursion of classical Newton method for the above problem is

x̃ j
k := x j

k − βk

1 + µ
Fj (xk).

The solution of (45) is x̃ k > 0, to avoid the non-positive value x̃ j
k in the iteration process,

we take

x̃ j
k := max{x j

k − βk

1 + µ
Fj (xk), 0}, j = 1, . . . , n.

The detailed algorithm is as follows.
Step 0. Let β0 = 1, η(:= 0.95) < 1, 0 ≤ a1 < 1, µ = 0.1, γ = 1.9, ε = 10−7, k = 0 and
x0 ∈ Rn+.
Step 1. If ‖ min(x, F(x))‖∞ ≤ ε, then stop. Otherwise, go to Step 2.
Step 2. (Prediction step)

x̃ k = PRn+[xk − βk
1+µ

F(xk)], ξ k := βk(F(x̃ k) − F(xk)),

r := ‖ξ k‖/‖xk − x̃ k‖.
while (r > η)

βk := βk ∗ 0.8/r , x̃ k = PRn+[xk − βk
1+µ

F(xk)],

ξ k := βk(F(x̃ k) − F(xk)), r := ‖ξ k‖/‖xk − x̃ k‖.
end while

Step 3. (correction step)

ϕk = 1
1+µ

‖xk − x̃ k‖2 + 1
1+µ

(xk − x̃ k)ξ k ,

dk = (xk − x̃ k) + 1
1+µ

ξ k , αk = γα∗
k = γ

ϕk
‖dk‖2 ,

xk+1 = a1xk + (1 − a1)PRn+[xk − αkβk
1+µ

F(x̃ k)],

Step 4. βk+1 =
{

βk∗0.7
r , if r ≤ 0.5;
βk , otherwise.

Step 5. k:=k+1; go to Step 1.
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5.1. Comparison with other methods

(1) A well known projection method is the extragradient method of Korpelevich [11] which
was extended by Khobotov [10]. The proposed method also can be viewed as improve-
ment of [10] in two directions:
Firstly, instead of αk ≡ 1 we have proposed αk = γα∗

k is dependent on the current point
xk, x̃ k and ξ k , and thus more precise.
Secondly the parameter sequence {βk} in the Khobotov method is monotonically non
increasing. However, this may cause a slow convergence if βk is taken too small. To
overcome this difficulty, we have proposed a self-adaptive technique. The main con-
tribution of this technique is that we allow elements of the penalty sequence to either
increase or decrease in iterations, not necessarily monotone.

(2) For given xk and βk := βk
1+µ

> 0, denote Fk(x) := (x − xk) + βk F(x) and � = Rn+.
The iteration of Solodov and Svaiter’s method (see [14] pp. 385, Algorithm 2) consists
of the following steps:
Algorithm SS
Step 1. Find a yk which is an approximate solution of

x ∈ Rn+, (x ′ − x)T Fk(x) ≥ 0, ∀x ′ ∈ Rn+, (46)

such that

{yk −PRn+[yk −Fk(yk)]}T Fk(yk)− 1

2
‖yk −PRn+[yk −Fk(yk)]‖2 ≤ η

2
‖yk − xk‖2.

(47)

Step 2. Set

xk+1 = PRn+[xk − βk F(yk)]. (48)

Note that the term yk in Algorithm SS plays the same role as the term x̃ k in our method.
Now let us observe the differences between Algorithm SS and our framework.
First we compare the error restrictions of the two methods. In Step 1 of Algorithm SS,
since yk ∈ Rn+, it follows from (7) that

{yk − PRn+[yk − Fk(yk)]}T Fk(yk) ≥ ‖yk − PRn+[yk − Fk(yk)]‖2.

In order to satisfy Condition (47), one needs at least

{yk − PRn+[yk − Fk(yk)]}T Fk(yk) ≤ η‖yk − xk‖2. (49)

As xk → x∗, the direction
(

yk − PRn+[yk − Fk(yk)]
)

is almost parallel to Fk(yk), and

usually F(x∗) �= 0. Therefore, as xk → x∗, it follows from (47) that

‖yk − PRn+[yk − Fk(yk)]‖ = O(‖yk − xk‖2). (50)

Notice that the x̃ k generated from our method (see Step 2) can be written as
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x̃ k = PRn+[x̃ k − Fk(x̃ k) + εk], (51)

and it requires at most

‖εk‖ ≤ η‖x̃ k − xk‖.
It is worthy to discuss the relation between εk and ek := yk − PRn+[yk − Fk(yk)] in

formula (49). Note that yk = x̃ k . Hence according to (51) we have

ek = PRn+[x̃ k − Fk(x̃ k) + εk] − PRn+[yk − Fk(yk)].
Since the projection is nonexpansive, in general we have ‖ek‖ ≤ ‖εk‖. Therefore

compared with Algorithm SS, the proposed method has a much relaxed error restric-
tion.
Next we compare the step lengths employed in the correction step. In Algorithm SS, the
step length is αk ≡ 1, which is different from the step length in our framework.

To test the proposed method, we consider the nonlinear complementarity problems:

x ≥ 0 F(x) ≥ 0, xT F(x) = 0, (52)

where

F(x) = D(x) + Mx + q,

D(x) and Mx + q are the nonlinear part and linear parts of F(x), respectively.
The matrix M = AT A + B is computed as follows. A is n × n matrix whose entries are

randomly generalized in the interval (−5,+5) and the skew-symmetric matrix B is gener-
ated in the same way. The vector q is generated from a uniform distribution in the interval
(−200, 300). The components of D(x) are D j (x) = d j ∗ arctan(x j ) and d j is chosen
randomly in (0, 1).

In all tests we take the logarithmic proximal parameter µ = 0.01, a1 = 0.01 and all
iterations start with x0 = (0, . . . , 0)T or x0 = (1, . . . , 1)T . We also test these problems with
α = 1, we denote by LQP1 and LQPα as the proposing methods with α = 1 and α = γα∗,
respectively. The stop criterion was set to be

‖ min(xk, F(xk))‖∞ ≤ 10−7.

All codes were written in Matlab, since the random value in Matlab is time dependent,
we tested each problem five times. The iteration numbers and the computational time for the
problem with different dimensions are given in the following tables.

Table 5.1 Numerical results for
(52) problem with start point
x0 = (0, . . . , 0)T

Dimension of LQP1 method LQPα method
the problem

No. It. CPU(Sec.) No. It. CPU(Sec.)

n=100 363 1.22 211 0.09
n=200 422 0.66 240 0.43
n=400 450 3.19 266 2.05
n=600 440 9.10 255 5.58
n=800 446 21.76 261 13.28
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Table 5.2 Numerical results for
(52) problem with start point
x0 = (1, . . . , 1)T

Dimension of LQP1 method LQPα method
the problem

No. It. CPU(Sec.) No. It. CPU(Sec.)

n=100 407 0.14 219 0.11
n=200 451 0.72 251 0.52
n=400 489 3.46 279 2.37
n=600 514 10.72 293 6.87
n=800 546 26.32 308 16.49

Table 5.1 and Table 5.2 show that the proposed method is more efficient, the step size
α = γα∗ plays important role to reduce the iterative numbers due the fact that the step size
α = γα∗ is dependent on the current point xk, x̃ k and ξ k , and thus more precise.

6. Concluding remarks

Based on the LQP method for VI(F, Rn+), we suggested using a prediction–correction method
to solve VI(F, Rn+). The predictor is obtained via solving an inexact LQP method, with more
relaxed accuracy criterion than (17) and the new iterate is computed by using the projec-
tion operator. Under suitable conditions, we proved the global convergence of the proposed
method. The numerical results showed that our algorithm works well for the problem tested.

References

Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational inequal-
ities, Comput. Optim. Appl. 12, 31–40 (1999)

Auslender, A., Teboulle, M., Ben-Tiba, S.: Interior proximal and multiplier methods based on second order
homogenous kernels, Math. Opererat. Res. 24, 646–668 (1999)

Burachik, R.S., Iusem, A.N.: A generalized proximal point algorithm for the variational inequality problem
in a hilbert space, SIAM J. Optim. 8, 197–216 (1998)

Eckestein, J.: Approximate iterations in bregman-function-based proximal algorithms, Math. Program. 83,
113–123 (1998)

Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementariry problems, SIAM Rev.
39, 669–713 (1997)

Glowinski, R.: Numerical Methods for Nonlinear Variational Inequality Problems. Springer Verlag, New York,
NY (1984)

Guler, O.: On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control
Optim. 29, 403–419 (1991)

Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems:
a survey of theory, algorithms and applications, Math. Program. 48, 161–220 (1990)

He, B.S.: Inexact implicit methods for monotone general variational inequalities, Math. Program. 86, 199–217
(1999)

Khobotov, E.N.: Modification of the extragradient method for solving variational inequalities and certain
optimization problems, USSR Comput. Math. Mathemat. Phys. 27, 120–127 (1987)

Korpelevich, G.M.: The extragradient method for finding saddle points and other problems, Ekonomika i
Matematchskie Metody 12, 747–756 (1976)

Moré, J.J.: Global methods for nonlinear complementarity problems, Math. Operations Res. 21, 589–614
(1996)

Rockafellar, R.T.: Monotone operators and the proximal point algorithm, SIAM J. Control Optimi. 14, 877–898
(1976)

Solodov, M.V., Svaiter, B.F.: Error bounds for proximal point subproblems and associated inexact proximal
point algorithms. Math. Program. Ser. B 88, 371–389 (2000)

Teboulle, M.: Convergence of proximal-like algorithms, SIAM J. Optim. 7, 1069–1083 (1997)


